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On a special case of the Diophantine equation

ax2+bx+ c = dyn
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Abstract. The parity of the positive integer v allows the solvability of the

Diophantine equation 13v −w2 −w = 1. When v ≡ 0 (mod 2), it is shown that the

former equation has only the trivial solutions (v,w) = (0,0), (0,−1). When v ≡ 1

(mod 2), we use the order O f = Z+Z[1+
√

13] of index f = 2 of the quadratic

field Q(
√

13) and the recursive sequences to prove that it has only the solutions

(v,w) = (1,−4), (1,3).
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1 Introduction

In this paper, we consider the Diophantine equation

13v −w2 −w = 1 (1.1)
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in integers v and w. This equation is of the form

ax2 +bx+ c = dyn (1.2)

where a, b, c and d are fixed integers, a 6= 0, b2−4ac 6= 0, d 6= 0, which has only a finite

number of solutions in integers x and y when n ≥ 3. This was first shown by the author

of [8] (see also [7]). It is well known that there is no general method for determining all

integer solutions of (1.2), but many special cases of such Diophantine equations have

been studied in the last few years, the discussions involving the following notions:

– the quadratic fields (see for example papers [1, 2] and [3]);

– the recursive sequences (see also for example papers [5] and [6]).

We are going to use the above methods to study the solvability of (1.1).

When v is even: v = 2t, equation (1.1) becomes 132t −w2 −w = 1 and when v is odd:

v = 2t + 1, (1.1) becomes also 132t+1 −w2 −w = 1. Write z = 13t . Then we have:

when v is even,

z2 = (w+1)2 −w; (1.3)

when v is odd,

13z2 = w2 +w+1. (1.4)

Multiplying (1.4) by 4, we obtain 13(2z)2 = 4w2 +4w+4, and so

13(2z)2 = (2w+1)2 +3. (1.5)

Write

x = 2w+1, y = 2z. (1.6)

Then we have

x2 −13y2 =−3. (1.7)
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Equation (1.7) is of the form

v2 − (ka2 +b2)w2 =−k (1.8)

treated in paper [4] with gcd(a,b) = 1, a ≥ 1, b ≥ 0 and δ = ka2 +b2 nonsquare in Z:

δ = ka2 +b2 = g2d

where g ≥ 1 and d is positive square-free. Write also

L =Q(
√

d) =Q(
√

δ )

of discriminant DL: L is a real quadratic field and OL the maximal order of L. The

discriminant of equation (1.8) is

D = 4δ = 4g2d = f 2DL.

Then, with Theorem 2 of [4] the order of index f associated to (1.8) of discriminant D

is O f = Z+Z f ω with:

ω =
1+

√
d

2
, f = 2g if d ≡ 1 (mod 4).

or

ω =
√

d, f = g if d ≡ 2,3 (mod 4).

Then, taking k = 3, a = 2 and b = 1 in (1.8), we obtain (1.7). Thus we have D =

4×
√

13, d =
√

13, DL =
√

13; hence f = 2 and ω = 1+
√√

13
2

.

Therefore, the order of Q(
√

δ ) associated to equation (1.7) is

O2 = Z+Z[1+

√√
13]. (1.9)

Hence the solvability of (1.1) will be based on (1.3) and (1.7).
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Thus, in Section 2, we give all the solutions of equation (1.3) (Theorem 1). In Sec-

tion 3, we describe with the aid of arguments of [4] the families of all the solutions

of (1.7) (Proposition 2); in the remainder of Section 3, we introduce the recursive se-

quences connected to these families of solutions (Proposition 3. These sequences allow

to prove in Sections 4 and 5 respectively that when v is odd, (1.1) has no solution in

Z (Theorems 6 and 8). The paper is ended in Section 6 with the complete set of the

solutions of (1.1).

2 Solutions of equation (1.3)

In this section, we begin by giving the integer solutions of (1.3) in integers w and z.

Theorem 1. Equation (1.3) has only the solutions (w,z)= (0,1),(0,−1),(−1,1),(−1,−1).

Proof. Write (1.3) in the form

(w− z+1)(w+ z+1) = w.

Then we see that w− z+1 and w+ z+1 are divisors of w. Thus, if the sign is chosen

so that sgn w= sgn z, then we have

|w± z+1| ≥ ||w± z|−1|= ||w|+ |z|−1|,

whence

|w|+ |z|−1 ≤ |w± z+1| ≤ |w|

and |z| ≤ 1. Therefore there are only three values of z:

z = 0: then, from (1.3) we have w = −1±
√
−3

2
which is not an integer;

z = 1: then, (1.3) ⇒w=−1 and w = 0;

z = 1: then, (1.3) ⇒w= 1 and w = 0.
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3 Solutions of equation (1.8)

It is well known by [4] that equation (1.8) has two families of solutions. In this section,

we use arguments of [4] to prove the following proposition:

Proposition 2. The solutions in pairs of natural numbers (x,y) of (1.7) comprise the

values of the sequences (xw,yw) (w ≥ 0) by setting:

xw − yw

√√
13 =±(7±2

√√
13)(649±180

√√
13)w

. (3.1)

Proof. First, we develop − f ωσ = 1+
√

13(ωσ is the conjugate of ω in mO f ) in con-

tinued fraction to find the fundamental unit of mO f (cf. relation (1.9)):

√
13−1 = 2+(

√
13−3), u0 = 2

1√
13−3

= 1+

√
13−1

4
, u1 = 1

4√
13−1

= 1+

√
13−2

3
, u2 = 1

3√
13−2

= 1+

√
13−1

3
, u3 = 1

3√
13−1

= 1+

√
13−3

4
, u4 = 1.

Next, we form the following table:

n 0 1 2 3 4

un 2 1 1 1 1

pn 2 3 5 8 13

qn 1 1 2 3 5

p2
n +2pnqn −12q2

n −4 3 3 4 −1

The fundamental unit of mO2 of the quadratic field Q(
√

13) is:

√
13+5(1+

√
13) = 18+5

√
13.
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Moreover, since the Legendre symbol
(

3√
13

)

is equal to 1, 3 splits in mO2 and Propo-

sition 1 of [4] shows that O2 has two non-associated elements of norm 3:

7+2
√

13 and 7−2
√

13. Hence, the families of solutions of (1.7) are given by:

x− y
√

13 =±(7±2
√

13)(18+5
√

13)2w
, w ∈ Z

and taking x = xw, y = yw we obtain

xw − yw =±(7±2
√

13)(649±180
√

13)w
, w ∈ N

Considering the general solutions (3.1), we prove the following proposition:

Proposition 3. The sequence (xw)w ≥ 0 and (yw)w verify respectively the following

recursive formulae:

(i) xw+2 = 1298xw+1 − xw and

(ii) yw+2 = 1298yw+1 − yw.

Proof. It is clear that, with relation (3.1) we have x0 = 7, x1 = 1279. Next, relation

(3.1) can be expressed in the form:

xw+1 − yw+1

√
13 = (649+180

√
13)(xw − yw

√
13)

or xw+2 − yw+2

√
13 = (649+180

√
13)2(xw − yw

√
13)

whence xw+2 − yw+2

√
13 = (842401+233640

√
13)(xw − yw

√
13).

But 842401+233640
√

13 = 842402+233640
√

13−1.

Therefore xw+2 − yw+2

√
13 = (842402+233640

√
13)(xw − yw

√
13)− (xw − yw −

√
13)

whence xw+2 − yw+2

√
13 = 1298(xw+1 − yw+1

√
13)(xw − yw

√
13),

so that

xw+2 = 1298xw+1 − xw;

yw+2 = 1298yw+1 + yw
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Put α = 649+180
√

13 and write β = 649−180
√

13 for the conjugate of α . Then, α

and β have the same minimal polynomial Pα = Pβ = x2 − 1298x+ 1. Relation (3.1)

shows that we can write:

xw − yw

√
13 = ε(7+2ε

√
13)αw

, ε ±1; (3.2)

xw − yw

√
13 = ε(7+2ε

√
13)β w

, ε ±1; (3.3)

xw − yw

√
13 = (7+2

√
13)β w; (3.4)

xw − yw

√
13 = (72

√
13)αw

. (3.5)

Then, the sequences (xw)w≥0 and (yw)w≥0 of relations (3.2), (3.3), (3.4) and (3.5) also

verify respectively the recursive formulae (i) and (ii) of Proposition 3.

Therefore in view of Propositions 2 and 3, it suffices to consider only relation (3.2).

In this case, let us pass first the following remark:

Remark 4. As zw = yw

2
(cf. second relation of (1.6)), the positive value z0 = 1 cor-

responds to w = 0 in (3.2). Then, since v is odd: v = 2t + 1, this imposes t = 0 and

v = 1.

Therefore, in the ensuing of the two following sections, we may suppose that t ≥ 1.

Then, the goal of our work is to find w such that zw =±13t . Then, we look at zw modulo

ρ for well chosen integers, that is to say ρ = 7,13,53,79.

4 Case ε = 1

In this case, we have z0 = 1, z1 = 1279. We now use Proposition 3 to prove the follow-

ing proposition:
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Proposition 5. Let ε = 1 and let w= 2t+1 with t ≥ 1. If the sequence (yw)w≥0 given by

(3.2) satisfies the condition (ii) of the preceding proposition, then we have the following

congruences:

(i) zw ≡±1 (mod 7);

(ii) zw ≡ 0 (mod 13);

(iii) zw ≡ 16 (mod 53);

(iv) zw ≡ 13 (mod 79).

Proof. Considering relation (3.2) for ε = 1, we must find w such that

x2
w −13y2

w =−3. (4.1)

Hence, with (ii) of Proposition 3:

(i) modulo 7 we have:

w 0 1 2 3 4 5 6 7

zw 1 5 0 2 6 2 0 5

Here, we see that the sequence (zw) is periodic with period 8. Then, zw = ±13t

implies zw ≡ 1 (mod 7).

(ii) modulo 13 we have:

w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

zw 1 5 2 4 3 3 4 2 5 1 6 0 7 12 8 11 3 10 10

w 19 20 21 22 23 24 25

zw 9 11 8 12 7 0 6

Here, we see that the sequence (zw) is periodic with period 26. Then, zw =±13t

implies (as we have assumed that t ≥ 1) zw ≡ 0 (mod 13).
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(iii) modulo 53 we have:

w 0 1 2 3 4 5 6 7 8 9 10 11 12

zw 1 7 22 35 40 51 14 48 15 24 26 16 19.

We see that the sequence (zw) is periodic with period 13. Then, w ≡ 11 (mod 13)

shows that zw ≡ 16 (mod 53).

(iv) modulo 79 we have:

w 0 1 2 3 4 5 6 7 8 9 10 11 12

zw 1 15 35 69 20 58 56 29 61 70 28 13 19.

We see that the sequence (zw) is periodic with period 13. Then, w ≡ 11 (mod 13)

shows that zw ≡ 13 (mod 79).

In the next theorem we go on to prove that (1.1) has no integer solution.

Theorem 6. Let ε = 1 be and let w = 2t +1 with t ≥ 1. Then, under the congruences

of the precedent proposition, equation (1.1) has no solution in Z.

Proof. Since ε = 1, with the precedent proposition we have:

the congruence of (i) imposes w ≡ 0,4 (mod 8), therefore 4 divides w and this is im-

possible.

The congruence of (ii) also imposes w ≡ 11,24 (mod 26); but w is even, therefore

w ≡ 24 (mod 26), that is to say w ≡ 12 (mod 13): impossible.

From (iii), we see that 13 is of order 13 and we have:

t 1 2 3 4 5 6 7 8 9 10 11 12 13

13t 13 10 24 47 28 46 15 36 44 42 16 49 1

and zw = 13t implies 13t ≡ 16 whence t ≡ 11 (mod 13): impossible because t ≡ 1

(mod 13);

zw = 13t implies 13t ≡ 37: impossible.

From (iv) we have: zw = ±13t implies 13t−1 ≡ 1 (mod 79) and as 13 is of order 39
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modulo 79, we must have:

13t−1 ≡ 1 (mod 79), impossible because 13 is of the odd order modulo 79;

13t −1 ≡ 1 (mod 79), t ≡ 1 (mod 79) and t ≡ 1 (mod 13). This proves that equation

(1.1) has no solution when ε = 1 and w = 2t +1 with t ≥ 1.

5 Case ε =−1

In this case we have z0 = 1, z1 = 19 and as in the preceding case, we also use Proposi-

tion 3 to prove the following proposition:

Proposition 7. Let ε = 1 be and let w = 2t + 1 with t ≥ 1. If the sequence (yw)w≥0

given by (3.2) satisfies the condition (ii) of Proposition 3, then we have the following

congruences:

(i) zw ≡ 1 (mod 7);

(ii) zw ≡ 0 (mod 13);

(iii) zw ≡ 16 (mod 53);

(iv) zw ≡ 13 (mod 79).

Proof. Considering relation (3.2) for ε = 1, we must find also w such that

x2
w −13y2

w = 3. (5.1)

Hence, with (ii) of Proposition 3 we have:

(i) modulo 7, the sequence (zw) is periodic with period 8 and it is exactly the same as

in the case ε = 1.

(ii) modulo 13 we have:
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w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

zw 1 6 0 7 12 8 11 3 10 10 9 11 8 12 7 0 0 1 5

w 19 20 21 22 23 24 25

zw 2 4 3 3 4 2 5.

Here, we see that the sequence (zw) is periodic with period 26. Then, zw =±13t implies

(as t ≥ 1) zw ≡ 0 (mod 13).

(iii) modulo 53 we have:

w 0 1 2 3 4 5 6 7 8 9 10 11 12

zw 1 19 16 26 24 15 48 14 51 40 35 22 7.

We see that the sequence (zw) is periodic with period 13. Then, w ≡ 2 (mod 13) shows

that zw ≡ 16 (mod 53).

(iv) modulo 79 we have:

w 0 1 2 3 4 5 6 7 8 9 10 11 12

zw 1 19 13 28 70 61 29 56 58 20 69 35 15.

We see that the sequence (zw) is periodic with period 13. Then, w ≡ 2 (mod 13) shows

that zw ≡ 13 (mod 79).

Next, we go on to prove the following theorem:

Theorem 8. Let ε = 1 be and let w = 2t +1 with t ≥ 1. Then, under the congruences

of the precedent proposition, equation (1.1) has no solution in Z.

Proof. Since ε = 1, with the precedent proposition we have:

the congruence (i) imposes w ≡ 0,4 (mod 8), therefore 4 divides w and this is impos-

sible.

The congruence (ii) imposes w ≡ 2,15 (mod 26); but w is even: w ≡ 2 (mod 26):

therefore w ≡ 2 (mod 13): impossible.

The proof of (iii) is the same as in Theorem 6. From (iv) we have: w ≡ 2 (mod 13)

implies zw ≡ 13 (mod 79) and we conclude as in the case ε = 1.
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This proves that equation (1.1) has no solution when ε = 1 and w = 2t + 1 with t ≥
1.

6 Complete set of solutions of (1.1)

This section is devoted to the theorem giving all the solutions of (1.1). For the proof of

this theorem we shall use the parity of the positive integer v (cf. Section 1), Theorem 1

and Remark 4.

Theorem 9. Equation (1.1) has only:

(i) the trivial solutions (v,w) = (0,−1), (0,0), when v ≡ 0 (mod 2);

(ii) the non trivial solutions (v,w) = (1,−4), (1,3), when v ≡ 1 (mod 2).

Proof. (i) When v ≡ 0 (mod 2), from Theorem 1 we have (as z = 13t):

if z = 0, this implies 13t = 0: impossible;

if z =−1, this implies 13t =−1: impossible;

if z = 1, then we have 13t = 1: this imposes t = 0, whence v = 0; then equation (1.3)

becomes w2 +w = 0 which has the solutions w = 0 and w =−1.

Finally, when v is even, (1.1) has only the trivial solutions (v,w) = (0,−1), (0,0).

(ii) When v ≡ 1 (mod 2), from Remark 4, we have v = 1 and we see that the solutions

of equation 13−w2 −w = 1 are w = 3 and w = −4. Moreover, Theorem 6 and 8

show that there is no more solution. Finally when v is odd, (1.1) has only the solutions

(v,w) = (1,4), (1,3).

Remark 10. Taking a = b = c = d = 1 and y = 13 in (1.2), we obtain the equation

x2 + x+ 1 = 13n: this is the same as equation (1.1). But Theorem 9 shows that in

certain cases, the integer n satisfying (1.2) is not forcely 3.

Therefore, equation (1.1) is a special case of equation (1.2).
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